Progress In Realizing Quantum Spin Liquids and Quantum Spin Ice
Dynamical signatures of fractionalization in dipolar-octupolar quantum spin ice
9:48 am – 10:24 amThe unambiguous experimental confirmation of a quantum spin liquid remains a longstanding issue in modern condensed matter physics. In particular, significant efforts have been made to realize quantum spin ice, a three-dimensional quantum spin liquid that provides a lattice realization of quantum electrodynamics and hosts emergent photons as well as gapped spinon excitations. Recent experiments on Ce-based dipolar-octupolar pyrochlore systems, Ce2Zr2O7 and Ce2Sn2O7, suggest that these materials may host the so-called π-flux quantum spin ice. We will first discuss the theoretical background for quantum spin ice and present our recent theoretical results on the dipolar-octupolar quantum spin ice states. Then we will compare our theoretical predictions on dynamical properties of spinons and emergent photons with recent experimental results.